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1. INTRODUCTION

The standard optimum properties like UMP, UMPU, UMPS, UMPI, of the

familiar Student's t-test for testing the significance of the mean of a

univariate normal population with unknown variance against one-sided or

both-sided alternatives are well-known. See, for example, Lehmann (1959).

In this paper we.show ainly without invariance that the t-test continues

to be optimum when normality is replaced by a class of elliptically sym-

metric distributions, thereby establishing optimality robustness of the

t-test. To fix ideas, let x = (xI , ... , xn )' - N(uI~ ), a > 0 unknown,

and consider the problem of testing H*: p = 0 versus H*: p > 0 or H*: p f 0.

Define the one-sided t-test and two-sided t-test respectively by

1 if v> c
x) otherwise (1.1)

1 if lvi > d(12
2 0 otherwise

where v = x'1/II xlI 1111, fixj = (x ) 12, 11111= nl12. It is proved in

Lehmann and Stein (1948) that

1
(a) for- < < 1, 01 is UMP for H* versus HI; however,

1

(b) no UMP test exists for H* versus H* for 0 < < 1. On the other hand,

it is trivial that

(c) I is UMPI for H* versus H* while

(d) €2 is both UMPS and UMPI for H* versus H*.

In the sequel, we assume that x has a density of the form

2 = - 2 2(13
f(x11j,o ) onq(jjx - l! 2 2 (1.3)

" * - -
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for some q 6 Q given by

Q = {qlq: [0,-) - [0,o), f q(,x11 2 )dx = 11. (1.4)
jR

n  ~

2
In what follows we mostly assume that both a and q in (1.3) are un-

known, and consequently define the three classes of densities on Rn:

F O(p) = {fIf(x) = q(1Ix - III2), q e Q} (1.5)

F1(1) = {fjf e FO(w), q nonincreasing)

F2(p) = {flf e F1 (p), q convex}.

The restrictions of nonincreasingness and convexity imposed on q in (1.5)

above are standard in robustness study (see Kariya (1981)). Clearly

F2() C F1(G) a FO(G) for all real p. Denote the density of x by h(x) and

consider the testing problems

HO: h 6 Fo(O) versus K0 : h E FO(u), P > 0 unknown (1.6)

Hi: h e F1 (0) versus KI: h e FlU'), v > 0 unknown

H2 : h e F2 (O) versus K2: h e F2(6), P 0 unknown.

Note the very general nature of both null and alternative hypotheses in

(1.6) which are essentially nonparametric. We define by Ci the class of

level a tests under Hi, i = 0, 1, 2, defined as

Cii = f I I Ef < a for all f e Fi(0)}, 0 < a < 1, (1.7)

where Cc denotes the class of all level a tests on Rn. It then follows

that C0  A C Cc ! become F2 (0) C FI(0) C Fo(0) "

There are some results in the literature for the testing problems

similar to (1.6). Lehmann and Stein (1949) proved that (e)>1 is UMP for
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testing H0 versus h is NUla 
2 1n) , w > 0 unknown. Kariya and Eaton (1977)

proved that (f)YI is UMP for testing H0 versus K1 while (g) 2 is UMPS for

testing H0 versus K2. It is interesting to note the implications of these

results. Clearly (f) is stronger than (e). Moreover, the class of level

a tests for which € is UMP in (e) is precisely CO and not C N =r) C( 0
2

10 2 N0o2>0

which is relevant in (b). Here Ca = e CJE[ IN(Oa21 ) < a), and

N n

CO is clearly much bigger than Ca. The same is true for the optimality

properties in (f) and (g) in that they hold only in Cc. For example, the
0*

UMP property of , in (f) simply means that for any f('Ip) e F1 (v) and

0,

EJ 1 f(.Iu)] > E{clf(.i)] for all e C0 (1.8)

but it does not mean that for a fixed h(,hli) 6 F l(U), I is UMP for testing

Hi(h): = 0 versus K1(h): 1 > 0 (1.9)

in the class of level tests under the fixed h defined as

C'(h) = - CaIEItIh(.0)I a a}. (1.10)

It is, therefore, evident that in the consideration of optimality robustness,

it is essential to clearly specify the class in which optimality holds.

It is the object of this paper to strengthen the results in (f) and

(g). We prove in Section 2 that for each fixed h e F1 (w), ti is UMP for

testing = 0 versus 0 0, i.e. for the problem (1.9), in the class of

conditional level r tests given w = !xT! 2 , which s a subclass of Cl(h)

given in (1.10) above. Also, the class C is shown to be the intersection

of the classes of conditional level % tests over h r F1 (O). These two
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results imply (f). Further, when < a < is shown to be UMP in

C = F C('(h). In Section 3, it is shown that, for each fixedh6F 1 (O)

h e F 2 w), *2 is UMP for testing P = 0 versus w f 0 in the class of con-

ditional similar level a tests satisfying a certain condition. This result

is stronger than (g). Finally, in Section 4, some properties of the t-test

with invariance are pointed out.

The following result, which is very basic and whose proof is omitted,

is useful for our purpose.

PROPOSITION 1. Let h e FO(P) be the density of x, where h(x)
20

q(Jlx - 411i2 ). Then

(1) (v,w) is a sufficient statistic for h.

(2) The joint density of (v,w) is given by

g(v,w; 1) = Coq(w - 2 Aw v p P + nP2)rO(v)wn / 2 - 1

with

1 n-3 = 1(n3v12-)2(n-3)/2rO0(v) = 2[B( , -7 -7 )]-I I -v 1 n 3 /

where c0 = {fr()}n/r(n/2) and B(ab) denotes the Beta function.

(3) When ii = 0, v and w are independent with density r0(v)ri(w) where

r1 (w) = c0wn/
2-1 q(w).

By (1) of the above proposition, without loss of generality we can re-

strict the class of tests for problems (1.6) to the one based on (v.w). We

denote this class by V in the rest of the paper.
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2. ONE-SIDED TESTING PROBLEMS

As mentioned 3bove, in this section we consider the following one-

sided testing problems:

For a fixed h s Fl( M, v = 0 versus P > 0 (2.1)

HO: h 6 Fo(O) versus K1 : h e F1( ), P > 0 unknown (2.2)

HI: h 6 FI(O) versus K1 : h 6 F1(i), i > 0 unknown. (2.3)

Note that the classes of level a tests relevant for these problems are

respectively 0(h), Cc' and C defined in (1.10) and (1.7). Of course, byrepetiel C~h, 0 an 1

Proposition 1, any test function j(x) belonging to these classes is essen-

tially of the form (v,w). Let E .) denote the expectation of • with re-

spect to the density r0 (v) of v given in (2) of Proposition 1 and let

a.a.(w,h) denote "almost all w with respect to the density rl(w) of w" given

in (4) where r1 depends on h. Also, let

ea(h) = { e DaI¢(v,w) e Ca(h)}, h e FI(O) (2.4)

D= { e vcfl(vw) 6 C) , i = 0, 1

where ec denotes the class of level a tests based on (v,w).

Our first main result is the following.

THEOREM 2.1. For problem (2.1), the test defined in (1.1) is UMP

in the class of conditional level a tests

v(2.5)
Kc(h) = {0 c Vc(h)JEO(f (v,w)j < c a.a.(w,h)).

ILI'A
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Proof. Write h(x) = q(!!x- 1!ii2 ) in FI(') and fix : ' 0.

From (2) of Proposition 1, the conditional density of v given w is given

by g(vw; ui)/ g(v,w; ;1 )dv. Using the nonincreasing property of q and

and applying the Neyman-Pearson Lemma, it follows that the test with the

critical region v > c(w) is MP in the class (2.5). But, when 0 = , v and

w are independent from (3) of Proposition 1. Therefore, c(w) is indepen-

dent of w. Finally, r (v) being independent of q, the above test coincides

with and is UMP in (2.5), thus completinq the proof.

Remark 2.1. It is important to note that is UMP only in Ka(h)

but not in (h). In fact, no UMP test exists in a(h) because an MP test

for a fixed ; = I > 0 in general depends on both q and I. However, the

above result implies (f) as demonstrated below.

Let

K = Kc(h), i = 0, 1. (2.6),; N6F i(01

LEMMA 2.1. (1) V= KO. (2) D' =-0 00 11

Proof. If e KO , then 0 e Kl(h) for all h e Fo(0) which implies
EoI,(v,w)I < a, a.a.(w.h) for any h e Fo(0). This immediately gives

E[p(v,w)Ih] < A for all h _ Fo(0 ) so that e DO" To show the converse,

suppose e O and there exists hI r Fo(0) such that h1 aives positive mass~v

to the set S {w > OlEot,(v,w)] > al. Clearly S is independent of any

h r F0 (0) since, by Proposition 1, the density of v under = is r0(v).

independent of h. Denote by r1 (w) the marginal density oT w under h ,

which is of the form given in (3) of Proposition 1. Since r (w) is abso-

lutely continuous with respect to Lebesgue measure, S has a positive Lebesque

,fi~~%.~s/~d-s~ss~.:~- . *.** -.. ~ -.
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measure, which in turn implies that S contains a bounded nonempty open

set A. Now define a density oRnbyh 2(X) =I A(Y xI 2)n/f A( 'IX ! )dx

where I (-) denotes the indicator function of the set A. Obviously,
A

h2 e F 0 ) and h2  ie the whole mass to the set A. Therefore,

Ej~lh I = E E [;(v,w)J'r2  > a' where r (w) is the uiensity of w under h.

This implies t 4 V , a contradiction. This proves (1).

00

To show the converse, suppose * E Kj' which means E[ Ihl fo ~r all h EF Q

* By the completeness of w for the family 14N(0,:- 21) 0, whose densities

are included in F (0), we get E [I-v,w)J l a.e. (Lebesgue), impl,/in,

V'This proves (2).
0

.

As a by-product, we get the following interesting facts.

COPOLLAPY 2.1. For problem (2 .1',:. is UM~P in K C V'. pr ef

f2 .2)i,; is UMP in VI
0*

Next we consider pruLlem '2.3). Note tha t a 1t hougr t he d> I r a vE,

Ior the twc problems. 122 and (2.3.] are the samc, + , ~e rX

*and HIare different as pointed out below.

LEMMA 2.?.

rj 1

_)er 1 - -r

-~ ~ ~ .er e .' '
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since q(1) < 1 because q( r x )dx =  1 and S

for sufficiently small a 0 0, Ef[:(w). fr'

hand, defining f (x) = IB( x 2 I
B/

it is clear that f (x) E F (0, but  E ' ' ,

the proof.

In view of the above ]emmna,

for problerr ,2.2 , ,e >me re< 

044

Jn

a..

ver ,IS A f wi th 0 1 iS

-

-

I

W.
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Proof. Fix P = P1 > 0 and choose f1 (x) = ql(Ilx - 1ill2) :

Ii2~ 2fI (x) (say), f0(x) = q1(lixjl2+ 2l 1V'nixi+ ni. )/J in Lemma 2.3, wherer 21(jIxIJT+

0 < s < 1 and J = ql 0 Xi2 + Upi 1 1Ix11+ np 2)dx > 0. Note that J can

be written as

J = Rn  q 1((iIxIi + 8 iV 'n)2 + S)dx

= ci f ql((r + ap1 v )2 + S)rn-l dr

= cjf q1 (r
2 + 6)(r - T)n-ldr <

since 1 = n qj(xjj2 )dx = clfn ql(r2)rn-ldr. Here c1 is a constant,

T = Oi >R0 and 6 = np2(1 > 0. Clearly, fo(X) FI(0) because q1 (.)

is nonincreasing in jlxii for r > 0. Hence, by Lemma 2.3 with K = J and

v = 0, the test t with critical region

ql(lix- v11112) > ql(ilxIj2 + 2vf"'xj! + nu ) (2.8)

1.1

is MP for testing H1 : h e F1 (0) versus h = fl provided Ef[*] < a for all

f e (O). Since ql is nonincreasing, (2.8) yields the test I with the

critical region v > -8. However, by (3) of Proposition 1, the distribution

of v when v = 0 is independent of h e Fo(O) D F1 (O). Hence 1 is MP for test-

ing H1 versus f = fl and hence UMP against fl because 1 is independent of

the fixed I > 0. Finally, note that P{v > -6} > P{v > 0)= for any

h e F(O). Hence the theorem.

Since the UMP test 01 for a fixed ql in Fl(p) is independent of q1, we

immediately have

COROLLARY 2.2. For problem (2.3), I is UMP whenever < < 1.



3. TWO-SIDED TESTING PROBLEMS

In this section we deal with the following two testinq problems:

For a fixed h 6a F2 (u), u = 0 versus 1 , 0 unknown (3.1)

H2 : h 6 F2(O) versus K2 : h s F62(M , u 0 unknown. (3.2)

Note that the classes of level a test functions relevant for these

two problems are respectively C(h) and e-2 defined in (1.10) and (1.7).2

As in Section 2, let

I'P(h) ={ e DVJo(v,w) . Cc(h)}, h e F2 (O) (3.3)

D-= r. Vc~o(v,w) 6 e-2 2,

where ea is the class of all level a tests based on (v,w). Further, let

K(v: 14,w) = g(vw; u)/Ig(vw: , )dv (3.41

be the conditional density of v given w where g(v,w: ) is given in (2' of

Proposition 1. Note that K(v: o,w) = r0 (v). For a test function E :-, let

?r(O,(j,,w,h)) -- E[ (v,w)jK(.: L,,w ] = ( 4 v w K v: - w
J-1

be the conditional power of o, given w, which reduces to the conditional

size

( (o~~h) -= Eot*(v,w)) (,,Iw)rO v dv

-I

under 0 0. Finally, let KLa(h ) and KS1  h' be -es e " ,e', " 'e

conditional unbiased tests of level i in and the c'ass C:rr-' ' r>a

similar tests of level in C" for h s; ' le",ne- as

=_%
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KU'(h) = {€ e Vc(h)IE'[(v,w)] < a a.a.(w,h), (3.7)

(¢,(1_,w,h)) > a for all p f 0 a.a.(w,h)}

KS"(h) = {( e V2E0[t(v,w)] = a a.a.(w.h)).

It is easy to verify that for each fixed h e F2(1 ), the conditional

power ,( ,(p,w,h)) is continuous a.a.(w,h) at p= 0, which yields the

relation

KU'(h) C KS'(h) for each fixed h 6 F2 (w). (3.8)

We are now ready to state the first main result of this section.

THEOREM 3.1. For oroblem (3.1), the two-sided t-test 2 defined in

,.2) is UMP in the class of tests in KSa(h) satisfying

vEoV v¢,(v,w) ]  = 0 a.a.(w,h). (3.9)

Proof. Write h(x) q( x - 272) where q is fixed nonincreasing

and ccnvex, and consider the problem of testing . 0 versus . = I  0 in

the conditional density k(v: .,w) in (3.4). Obviously KS0 (h) is the class

c: s',ze tests for this problem. Now by the generalized Neyman-Pearson

"emma, a test :" which maximizes the conditional power -(-,k, 1 ,w,h)) sub-

ect to 'S q'ven by

S if .< ,W\ c r (V, + C'Vr (yV)A f < .. ,w (v + C Q1 0  0V o .

' ' o t h e r w i 
s e

ireee _.,n se nsrs ch csen t: satisfv the s,ze , condition

So ,-roposition I and the cnnvetit J

L~hn P. ...... . e:AAAJ A _ vd et t
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1 if v > b or v < a
¢*(v,w) =(3.11)

0 otherwise

which is clearly independent of pl. From (3) of Proposition 1, due to the

symmetry of rO(v), we get that the constants a and b satisfying Ev(¢*)

and (3.9) must obey the relation -a = b = c (say). Therefore €* = ¢2' and

hence for any @ e KSa(h) satisfying (3.9) and for any v j 0, we get

7(r 2 ,( i,w,h)) > ir( ,(p,wh)) a.a.(wh). 1 (3.12)

Taking expectations with respect to w in both sides of (3.12) proves the

theorem.

In view of the relation in (3.8) and the fact that €2 e KUa(h), we

immediately conclude

COROLLARY 3.1. For problem (3.1), 02 is UMP in the class of tests in

KUci(h) satisfying (3.9).

We next consider problem (3.2). Let

KU = cKU(h), KSc KSct(h) (3.13)
heF 2(0) heF 2 (O)

denote respectively the class of conditional unbiased tests of level a in Do,

and the class of conditional similar tests of level a in Va appropriate for

this problem. Also let Ui and Sa be respectively the class of unbiased tests

of level a in 2 and the class of similar tests of level a in Da defined as

Cf1  (0 6 LP-17(0,(O,h)) < a for any h e 2(0) (3.14)

r( ,(p,h)) > a for any h e F2(1 ) and p 01

S" = f€ E D~l (,(O,h)) = a for any h e F (0)}.



14

where ir( ,(uh)) F E[O(v,w)] is the power function of 0 under h e F2(p).

The various relationships amongst these four classes are given below.

LEMMA 3.1. (1) Ktff tP

(2) VciC?

(3) KS S=.

Proof. (1) follows from the definitions of KWfa and tI. (2) follows

from the easily verifiable fact that for any 4 e IV2 and any h e F2(1),
22

i(o,( ,,h)) is continuous in p. To show (3), note that K? C S follows22

from the definitions. On the other hand, since N(p) °- {N(p,c )1 2 > O} C F2 (1j)

and w is complete for N(O)= F2 (O), it follows that ir(o,(O,h))

Eo[Eo{v(v,w)Iw}I = a necessarily implies

EoI*(v,w)I = a a.a.(w,h) for all h e F2(0),

which shows S C K&?. This completes the proof of the lemma.

Our main result for problem (3.2) is the following.

THEOREM 3.2. For problem (3.2), the two-sided t-test *2 is UMP in So

i.e., UMP similar.

Proof. By Theorem 3.1 and (3) of Lemma 3.1, it is enough to show

that any So' sati.sfies (3.9). Assuming h e F2( (w) is the density of

N(w1,o 21n it follows that when w = 0,

Eov[v,(v,w)J = 'AE vv] = 0 (3.15)

because the derivative of T(,(P,h)) at p = 0 is zero and because w is

complete for N(O) - IN(O,c 2 I,>02 . However, by Proposition 1, (3.15)

is true for any h e F2(O). This completes the proof.
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Since *2 6 U a, by (2) of Lemma 3.1 we immediately get

COROLLARY 3.2. For problem (3.2), 02 is UMP in Ua , i.e. UMP unbiased.

4. t-TEST WITH INVARIANCE

It is well-known (Kariya (1981)) that when the density of x is given

by (1.3), the one-sided t-test 01 is UMPI for testing w = 0 versus w > 0

for any fixed nonincreasing q and the two-sided t-test 2 is UMPI for test-

ing P = 0 versus P 0 for any fixed nonincreasing and convex q. The grouDs

leaving the problems invariant are respectively given by G1 - R+ x O(n) and

G2  R, x 0(n), where R+ = fa > 01, R, = {a e Ria 01, 0(n) = {r 6 O(n)jr1 11,
2~

and O(n) is the group of n x n orthogonal matrices. Maximal invariants under

G1 and G2 with group actions (y,r)(x) = yrx,(y,r) e Gi, i = 1, 2, are re-

spectively v and lvl, and the classes of invariant level a tests are respec-

tively given by

' {. C e6 V) is based on v only, EvO] < a) (4.1)

= (416 .I4(-V) = 4(V)j. (4.?)
2 1

Since the null distribution of v does not depend on q vide Kariya (1981)),

it follows from (2.4) that

f c D". a D' c: D'(h), h e F2 (O). (4.3)
2 1 0 1 2

In fact, the following result holds.

LEMMA 4.1. 1

1 0*.
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Proof. Take any test function (w) constant and any (v) e J?
11

Then the test defined by *(w)o(v) e because E p(w)4Iv)] ip(w)Ev[p(v)] < a.

However, ip(w)4(v) * "' completing the proof.

Consequently, for the one-sided testing problem, the results in

Corollary 2.1 are somewhat stronger than the result that 1 is UMPI.

An analogous result is obtained below for the two-sided testing problem.

Recall the definitions of Sa and Ja, given in (3.14) and (4.2) respectively.

LEMMA 4.2. j22 IS"

Proof. # Note from Proposition I that h e F2 (O), v and w are independent

and the densities are YesDectively aiven by r0 (v) and rIkw) where q depends

on h. The conditional size condition Eo[p(v,w)j = c, and the conditional

similarity condition (3.9j can be expressed as

r
S(v,w)r 0  v)dv = a a.a.(w,h e F2 (0)) (4.4)

Jrvs(vw)r 0 (v)dv = 0 a.a.(w,h e F2(0)). (4.5)

Now take two tests '.1(v) and - (v) based on v only which are functionally

independent and satisfy (4.5) with

K i(V)r 0 (v)dv, i = 1, 2

and 0 0. Next choose any two tests (w) and kw based on

w only which satisfy

; l w ) r , (wi

Finally, define the test : ,w v (w' ' . W ear -
V *

satisfies E : v,w) - , and const (I,;nstan t ie epeno, n(:ri i I I.

"his completes the prorf

Clearly T, S We will cnnstrct a test "* v,w ' ,

%p
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